JCOL BASIC SKILLS PACK 4

JUNIOR CERT ORDINARY LEVEL

JCOL Basic Skills: Pack 4 - Table of Contents

Contents

1 Functions and Graphs: 2018 Paper 1-Q14 (a)
2 Coordinate Geometry: 2012 Paper 2-Q5 (b)
3 Algebra: 2015 Sample Paper 1 - Q11 (a)
4 Statistics: 2017 Paper 2-Q5 (a) (i)
$5>$ Area, Perimeter and Volume: 2019 Paper 2 - Q5 (b) (i)

Maths Points
Junior and Leaving Cert

Draw the graph of the following function in the domain $-2 \leq x \leq 2$, for $x \in \mathbb{R}$.

$$
y=2 x+3
$$

Must find at least 2 points as the function is a straight line. We can find these points by subbing in $x=-2$ and $x=2$.

$$
\begin{array}{ll}
y=2 x+3 & y=2 x+3 \\
y=2(-2)+3 \\
y=-4+3 \\
y=-1 \\
& \\
& \begin{array}{l}
(-2,-1) \\
y=2 x+3 \\
y=2 x+3 \\
y=2 \\
y=4 \\
y=7
\end{array} \\
& \begin{array}{l}
(2,7) \\
y
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Midpoint } \\
& =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& R(-1,2) \rightarrow\left(x_{1}, y_{1}\right) \\
& S(5,6) \rightarrow\left(x_{2}, y_{2}\right)
\end{aligned}
$$

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

$$
=\left(\frac{-1+5}{2}, \frac{2+6}{2}\right)
$$

$$
=\left(\frac{4}{2}, \frac{8}{2}\right)
$$

$$
=(2,4)
$$

$(2,4)$ is the midpoint of $[R S]$.

Express $\frac{2 x+1}{3}+\frac{3 x-5}{2}$ as a single fraction. Give your answer in its simplest form.
$\frac{2 x+1}{3}+\frac{3 x-5}{2}$
$=\frac{2(2 x+1)+3(3 x-5)}{6}$
$=\frac{4 x+2+9 x-15}{6}$
$=\frac{13 x-13}{6}$

Note:

Numerator - top of fraction
Denominator - bottom of fraction

There are 15 boxers in a boxing club. The weight of each boxer (in kg) is shown in the table below.

47	49	49	50	56
57	58	65	67	68
69	69	69	75	79

Complete the stem and leaf diagram below to show this data.

Work out the area of the circle k.
Give your answer in cm^{2}, correct to one decimal place.

The formula for the Area of a Circle is on page 8 of the Maths Formulae Book.

$$
\begin{aligned}
& \text { Area of a Circle } \\
& \begin{array}{l}
A=\pi r^{2}
\end{array} \\
& \begin{array}{l}
A=\pi r^{2} \\
A=\pi(3)^{2} \\
A=9 \pi \\
A=28.3 \mathrm{~cm}^{2} \\
\text { Correct to } 1 \text { decimal place. }
\end{array} \text {. } \\
& \begin{array}{l}
\text { A }
\end{array} \\
& \begin{array}{l}
\text { A }
\end{array} \\
& \hline
\end{aligned}
$$

