JCOL BASIC SKILLS PACK 7

JUNIOR CERT ORDINARY LEVEL

JCOL Basic Skills: Pack 7 - Table of Contents

Contents

1 Algebra: 2000 Paper 1-Q1 (vii)
2 Functions and Graphs: 2012 Paper 2 - Q5 (c) (ii)
3 Geometry: 2012 Paper 2 - Q9 (b)
4 Coordinate Geometry: 2017 Paper 2 - Q10 (b)
5 - Patterns: 2019 Paper 1-Q6

Maths Points
Junior and Leaving Cert

Express b in terms of a and c when $a+4 b=3 c$.

$$
\begin{aligned}
& a+4 b=3 c \\
& 4 b=3 c-a \\
& b=\frac{3 c-a}{4}
\end{aligned}
$$

l is the line $x+y-5=0$.
By letting $y=0$, find the co-ordinates of the point where the line l meets the x-axis.

$$
x+y-5=0
$$

A line crosses the x axis where $y=0$.

$$
\begin{aligned}
& x+y-5=0 \\
& x+0-5=0 \\
& x=5 \\
& (5,0)
\end{aligned}
$$

The line meets the x-axis at $(5,0)$.

In the diagram below $l_{1} \| l_{2}$. Write the measure of each angle shown by an empty box into the diagram, without using a protractor.

Label the Angles

Theorem 1
$A=B=70^{\circ}$
(Vertically-opposite Angles)
Vertically opposite angles are equal in measure.

Supplementary Angles	$A+C=180^{\circ}$ $70+C=180$ Two angles are supplementary when their sum is 180°.
	$C=180-70$ $C=110^{\circ}$
Theorem 3 (Alternate Angles)	$B=F=70^{\circ}$ $C=E=110^{\circ}$

If two lines are parallel, then any transversal will make equal alternate angles with them.

Theorem 5

(Corresponding Angles)
Two lines are parallel if and only if for any transversal, corresponding angles are equal.

Find the point of intersection of the following two lines.

$$
\begin{gathered}
y=2 x+7 \\
y=5 x-11
\end{gathered}
$$

To find the point of intersection we solve the simultaneous equation.

Write the equations in
the form $a x+b y=c$ and label them (1) and (2).

$$
\begin{gather*}
-2 x+y=7 \tag{1}\\
-5 x+y=-11 \tag{2}
\end{gather*}
$$

Multiply one or both lines so that we eliminate either the x or y when adding the lines.
(2) $\times-1$

$$
\begin{align*}
-2 x+y & =7 \tag{1}\\
5 x-y & =11 \\
3 x & =18 \\
x & =\frac{18}{3} \\
x & =6
\end{align*}
$$

Sub $x=6$ back into either original equation to find y.

$$
\begin{equation*}
-5 x+y=-11 \tag{①}
\end{equation*}
$$

$$
-5(6)+y=-11
$$

$$
-30+y=-11
$$

$$
y=30-11
$$

$$
y=19
$$

Point of Intersection of the lines :
$(6,19)$

The first three patterns in a sequence are shown. Draw Pattern 4 in the sequence.

Pattern 1

Pattern 2

Pattern 3

Pattern 4

Pattern 1

Pattern 2

Number of small squares

Pattern	Number of small squares
1	2
2	5
3	10
4	17

Pattern 3

Pattern 4

The number of small squares in Pattern n is:
$n^{2}+1$
Use this to work out the number of small squares in Pattern 20.

Pattern 1
Pattern 2

Pattern 3

To find the number of small squares in any pattern we square the pattern number and add one.

$$
T_{n}=n^{2}+1
$$

$20^{\text {th }}$ pattern:

$$
\begin{aligned}
& T_{20}=(20)^{2}+1 \\
& T_{20}=400+1 \\
& T_{20}=401
\end{aligned}
$$

What kind of sequence is made by the number of small squares in each pattern? Tick (\checkmark) one box only. Give a reason for your answer.

exponential

Pattern	Number of small squares
1	2
2	5
3	10
4	7

$2,5,10,17, \ldots$
Calculate the difference in the number of
small squares each time.
This is a quadratic sequence.
The number of small squares is increasing by an ADDITIONAL 2 each time.

