JCOL BASIC SKILLS PACK 8

JUNIOR CERT ORDINARY LEVEL

JCOL Basic Skills: Pack 8 - Table of Contents

Contents

1 Number and Arithmetic: 2002 (JCHL) Paper 1 - Q1 (ii)
2 Coordinate Geometry: 2002 (JCHL) Paper 2 - Q1 (ix)
3 Algebra: 2019 Paper 1-Q7 (a)
4 Statistics: 2019 Paper 2 - Q7 (c)
5 Geometry: 2017 Paper 2 - Q8 (c)

Maths Points
Junior and Leaving Cert

A person travelled at an average speed of $72 \mathrm{~km} / \mathrm{hr}$ for 4 hours and 20 minutes.
How far did the person travel?

Verify that the point $(1,-1)$ is on the line $3 x+2 y-1=0$.

To determine whether a point is on a line we sub the x and y coordinates of the point into the line (for x and y) and check if the resultant equation is true.

$$
3 x+2 y-1=0
$$

$3 x+2 y-1=0$
$3(1)+2(-1)-1=0 \quad-x=1, y=-1$
$3-2-1=0$
$0=0$

Which is true therefore $(1,-1)$ is on the line.

Expand the brackets by multiplying then simplify by collecting 'like' terms together.

$$
\begin{aligned}
& (x+3)(x-2) \\
& =x(x-2)+3(x-2) \\
& =x^{2}-2 x+3 x-6 \\
& =x^{2}+x-6
\end{aligned}
$$

Filip measures the height of seven of the students in his class. Their heights, in cm , are:

166	168	168	169	172	173	177

Work out the median of the data, in cm .

166	168	168	169	172	173	177

The median is the middle value when ordered from lowest to highest.
There are 7 values.

$$
\frac{7}{2}=3.5
$$

If we get a decimal we always round up.
$\rightarrow 4^{\text {th }}$ value

Median $=169 \mathrm{~cm}$

The diagram below shows part of a climbing frame.
The points B and C are on the ground.
The legs $[O B]$ and $[O C]$ are joined by the horizontal bar $[P S]$.
Ava measures the angle that each of the legs makes with the ground. She finds that they are both 55°.
$O B C$ and $O P S$ are similar triangles.
Explain what this means.

Triangles are similar (equiangular) if all the angles are the same.

$$
\begin{array}{lll}
|\angle O B C|=|\angle O P S| & \circ & \text { Corresponding Angles } \\
|\angle O C B|=|\angle O S P| & \circ & \text { Corresponding Angles } \\
|\angle B O C|=|\angle P O S| & \bullet & \text { Common Angle }
\end{array}
$$

$\therefore \triangle O B C$ and $\triangle O P S$ are equiangular. The triangles are similar.

