

Maths Points

Junior and Leaving Cert

JCOL BASIC SKILLS PACK 8

JUNIOR CERT ORDINARY LEVEL

Contents

- 1 Number and Arithmetic : 2002 (JCHL) Paper 1 Q1 (ii)
- 2 Coordinate Geometry : 2002 (JCHL) Paper 2 Q1 (ix)
- 3 ► Algebra : 2019 Paper 1 Q7 (a)
- 4 Statistics : 2019 Paper 2 Q7 (c)
- 5 Geometry : 2017 Paper 2 Q8 (c)

Maths Points

Junior and Leaving Cert

1 ► 2002 JCHL Paper 1 – Question 1 (ii)

A person travelled at an average speed of 72 km/hr for 4 hours and 20 minutes. How far did the person travel?

Distance = Speed × Time
=
$$72 \times 4\frac{1}{3}$$

= 312 km

Conversion 20 mins $= \frac{20}{60}$ hours $= \frac{1}{3}$ hours

Verify that the point (1, -1) is on the line 3x + 2y - 1 = 0.

To determine whether a point is on a line we sub the *x* and *y* coordinates of the point into the line (for *x* and *y*) and check if the resultant equation is true.

3x + 2y - 1 = 0

$$3x + 2y - 1 = 0$$

$$3(1) + 2(-1) - 1 = 0 \qquad \checkmark x = 1, y = -1$$

$$3 - 2 - 1 = 0$$

$$0 = 0$$

Which is true therefore (1, -1) is on the line.

Multiply out and simplify (x + 3)(x - 2).

Expand the brackets by multiplying then simplify by collecting 'like' terms together.

$$(x + 3)(x - 2)$$

= $x(x - 2) + 3(x - 2)$
= $x^2 - 2x + 3x - 6$
= $x^2 + x - 6$

4 ► 2019 JCOL Paper 2 – Question 7 (c)

Filip measures the height of seven of the students in his class. Their heights, in cm, are:

166168169172173177Work out the median of the data, in cm.

The **median** is the **middle value** when ordered from lowest to highest.

There are 7 values.

$$\frac{7}{2} = 3.5$$

If we get a decimal we always round up.

 $\rightarrow 4^{\text{th}}$ value

Median = 169 cm

5 ► 2017 JCOL Paper 2 – Question 8 (c)

The diagram below shows part of a climbing frame. The points *B* and *C* are on the ground. The legs [*OB*] and [*OC*] are joined by the horizontal bar [*PS*]. Ava measures the angle that each of the legs makes with the ground. She finds that they are both 55°.

OBC and *OPS* are **similar** triangles.

Explain what this means.

Triangles are similar (equiangular) if all the angles are the same.

$ \angle OBC = \angle OPS $	•	Corresponding Angles
$ \angle OCB = \angle OSP $	•	Corresponding Angles
$ \angle BOC = \angle POS $	•	Common Angle

 $\therefore \Delta OBC$ and ΔOPS are equiangular. The triangles are **similar**.

