

LCOL BASIC SKILLS PACK 5

LEAVING CERT ORDINARY LEVEL

LCOL Basic Skills: Pack 5 - Table of Contents

Topic, Year and Level

1 Applied Arithmetic (Financial): 2015 JCHL Paper 1 - Q3 (a)
2 Functions and Graphs: 2016 JCHL Paper 1-Q14 (a)
3 Complex Numbers: 2012 Paper 1-Q4 (b)
$4>$ Coordinate Geometry: 2010 Paper 2 - Q2 (c)
5 - Statistics: 2012 LCOL Sample Paper 1 - Q6 (c)

Maths Points
Junior and Leaving Cert

Eleanor has a gross income of $€ 38500$ for the year.
She has an annual tax credit of $€ 3300$.
The standard rate cut-off point is $€ 33800$.
The standard rate of income tax is 20% and the higher rate is 40%.
Find Eleanor's net income for the year (i.e. after tax is paid).

$38,500-33,800=4,700$

Standard Rate Tax \rightarrow	$33,800 \times 0.20$
	= €6,760
Higher Rate Tax	$4,700 \times 0.40$
	= € 1,880
Gross Tax	6,760 +
	1,880
	€8,640

Tax Payable $=$ Gross Tax - Tax Credits

$$
\begin{array}{r}
8,640- \\
3,300 \\
\hline € 5,340
\end{array}
$$

Net Income $=$ Taxable Income - Deductions

$$
\begin{gathered}
38,500- \\
5,340 \\
\hline 33,160
\end{gathered}
$$

Eleanor's net income is $€ 33,160$.

The function $h(x)$ below gives the approximate height of the water at Howth Harbour on a particular day, from 12 noon to 5 p.m. $h(x)=10 x^{2}-50 x+130$,
where $h(x)$ is the height of the water in centimetres, and x is the time in hours after 12 noon.

Draw the graph of the function
$h(x)=10 x^{2}-50 x+130$
on the axes below, for $0 \leq x \leq 5, x \in \mathbb{R}$.

Always fill out a table.

\boldsymbol{x}	$h(x)=10 x^{2}-50 x+130$	$\boldsymbol{h}(\boldsymbol{x})$	Points
0	$10(0)^{2}-50(0)+130$	130	$(0,130)$
1	$10(1)^{2}-50(1)+130$	90	$(1,90)$
2	$10(2)^{2}-50(2)+130$	70	$(2,70)$
3	$10(3)^{2}-50(3)+130$	70	$(3,70)$
4	$10(4)^{2}-50(4)+130$	90	$(4,90)$
5	$10(5)^{2}-50(5)+130$	130	$(5,130)$

... always check solution by using table mode of the calculator!

$$
z=1+i
$$

Modulus of a Complex Number

If $z=a+b i$
then the modulus $|z|=\sqrt{a^{2}+b^{2}}$
$|z|=|1+i|$
$|z|=\sqrt{(1)^{2}+(1)^{2}}$
$|z|=\sqrt{1+1}$
$|z|=\sqrt{2}$

The modulus of a complex number measures the distance of the complex number to the origin, $(0,0)$.

$$
\begin{array}{l|l}
\text { Distance Formula } \\
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \begin{array}{l}
A(2,-1) \rightarrow\left(x_{1}, y_{1}\right) \\
B(-4,7) \rightarrow\left(x_{2}, y_{2}\right)
\end{array}
\end{array}
$$

The distance formula has been derived from Pythagoras Theorem!

The heights in 2011 of Irish males born in 1992 are normally distributed with mean 178.8 cm and standard deviation 7.9 cm .

Use the empirical rule to complete the following sentence:
" 95% of nineteen-year-old Irish men are between 163 and 194.6 in height."

Empirical Rule states that 95\% of normal distribution is within 2 standard deviations of the mean.
[178.8-2(7.9), $178+2(7.9)]$
[163, 194.6]

Use the empirical rule to make one other statement about the heights of nineteen-year old Irish men.

Empirical Rule states that 68\% of normal distribution are within 1 standard deviation of the mean.
[178.8-7.9,178 + 7.9]
[170.9, 186.7]
" 68% of nineteen-year-old Irish men are between 170.9 cm and 186.7 cm in height."

