

Maths Points

Junior and Leaving Cert

LCOL BASIC SKILLS PACK 5

LEAVING CERT ORDINARY LEVEL

Topic, Year and Level

- 1 > Applied Arithmetic (Financial) : 2015 JCHL Paper 1 Q3 (a)
- 2 Functions and Graphs : 2016 JCHL Paper 1 Q14 (a)
- 3 Complex Numbers : 2012 Paper 1 Q4 (b)
- 4 Coordinate Geometry : 2010 Paper 2 Q2 (c)
- 5 Statistics: 2012 LCOL Sample Paper 1 Q6 (c)

Maths Points

Junior and Leaving Cert

1 ► 2015 JCHL Paper 1 – Question 3

Eleanor has a **gross** income of \in 38 500 for the year. She has an annual tax credit of \in 3300. The standard rate cut-off point is \in 33 800. The standard rate of income tax is 20% and the higher rate is 40%.

Find Eleanor's **net** income for the year (i.e. after tax is paid).

Gross Income

€38,500

First calculate the balance of Eleanor's income that will be taxed at 40%.

38,500 - 33,800 = 4,700

Tax Payable = Gross Tax – Tax Credits

8,640 -<u>3,300</u> €5,340

Net Income = Taxable Income – Deductions

38,500 – <u>5,340</u> 33,160

Eleanor's net income is €33,160.

2 > 2016 JCHL Paper 1 – Question 14 (a)

The function h(x) below gives the approximate height of the water at Howth Harbour on a particular day, from 12 noon to 5 p.m. $h(x) = 10x^2 - 50x + 130$, where h(x) is the height of the water in centimetres, and x is the time in hours after 12 noon.

Draw the graph of the function $h(x) = 10x^2 - 50x + 130$ on the axes below, for $0 \le x \le 5$, $x \in \mathbb{R}$.

Always fill out a table.			
x	$h(x) = 10x^2 - 50x + 130$	h (x)	Points
0	$10(0)^2 - 50(0) + 130$	130	(0,130)
1	$10(1)^2 - 50(1) + 130$	90	(1,90)
2	$10(2)^2 - 50(2) + 130$	70	(2,70)
3	$10(3)^2 - 50(3) + 130$	70	(3,70)
4	$10(4)^2 - 50(4) + 130$	90	(4,90)
5	$10(5)^2 - 50(5) + 130$	130	(5,130)

... always check solution by using table mode of the calculator!

$3 \ge 2012$ LCOL Paper 1 – Question 4 (b)

Let z = 1 + i.

Find |z|.

z = 1 + i

Modulus of a Complex Number If z = a + bithen the modulus $|z| = \sqrt{a^2 + b^2}$

|z| = |1 + i| $|z| = \sqrt{(1)^2 + (1)^2}$ $|z| = \sqrt{1 + 1}$ $|z| = \sqrt{2}$

measures the distance of the complex number number to the origin, (0,0).

4 ► 2010 LCOL Paper 2 – Question 2 (c)

$$A(2, -1)$$
 and $B(-4, 7)$ are two points.

Find |AB|.

Distance Formula
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$A(2,-1) \rightarrow (x_1, y_1)$$

 $B(-4,7) \rightarrow (x_2, y_2)$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
$$|AB| = \sqrt{(-4 - 2)^2 + (7 - (-1))^2}$$
$$|AB| = \sqrt{(-6)^2 + (8)^2}$$
$$|AB| = \sqrt{36 + 64}$$
$$|AB| = \sqrt{100}$$
$$|AB| = 10$$

The formula for **Distance** is on **page 18** of the Maths Formulae Book.

The distance formula has been derived from Pythagoras Theorem!

5 > 2012 LCOL Sample Paper 2 – Question 6 (c) (i)

The heights in 2011 of Irish males born in 1992 are normally distributed with mean 178.8 cm and standard deviation 7.9 cm.

Use the *empirical rule* to complete the following sentence:

"95% of nineteen-year-old Irish men are between <u>163</u> and <u>194.6</u> in height."

```
Empirical Rule states that 95% of normal distribution
is within 2 standard deviations of the mean.
[178.8 - 2(7.9), 178 + 2(7.9)]
[163, 194.6]
```


Empirical

Normal

(ii)

Use the empirical rule to make one other statement about the heights of nineteen-year old Irish men.

Main Menu

