

LCOL BASIC SKILLS PACK 6

LEAVING CERT ORDINARY LEVEL

LCOL Basic Skills: Pack 6 - Table of Contents

Topic, Year and Level

1 - Applied Arithmetic (Financial): 2014 JCHL Paper 1 - Q7 (i)
Statistics: 2019 JCOL Paper 2 - Q7
3 Coordinate Geometry: 2007 Paper 2-Q2 (c) (i)
Area, Perimeter and Volume : 2004 Paper 1-Q5 (b)
Number: 2013 JCHL Paper 1 - Q1 (a)

Maths Points

Last year Elena had a gross income of $€ 36,960$.
She had to pay Universal Social Charge (USC) and income tax on her gross income. The rates and bands of USC are as follows.

Find the amount of USC that was deducted from Elena's gross income last year.

Income band	Rate of USC
Up to €10 036	2%
Between €10 036 and €16 016	4%
Above €16 016	7%

First calculate the amounts to be taxed at 4\% (16016-10036) and 7\% (36960-16016).

$16016-10036=5980$			
$36960-16016$	$=20944$	\quad	at 4%
:---			
at 7%			

Find 2% of $€ 10036$
$10036 \times 0.02=200.72$
Find 4% of $€ 5980$
$5980 \times 0.04=239.20$
Find 7\% of $€ 20944$
$20944 \times 0.07=1466.08$
The total USC is the sum of each of these amounts.

$$
200.72+239.20+1466.08=€ 1906
$$

Filip measures the height of seven of the students in his class. Their heights, in cm, are:
166
168
168
169
172
173
177
Write down the mode of the data, in cm .

| 166 | 168 | 168 | 169 | 172 | 173 | 177 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The mode is the most common value.

Mode $=168 \mathrm{~cm}$

Filip measures the height of seven of the students in his class. Their heights, in cm, are:
166
168
168
169
172
173
177

Write down the median of the data, in cm .

166	168	168	169	172	173	177

The median is the middle value when ordered from lowest to highest.
There are 7 values.

$$
\frac{7}{2}=3.5
$$

If we get a decimal we always round up.
$\rightarrow 4^{\text {th }}$ value

Median $=169 \mathrm{~cm}$

Filip measures the height of seven of the students in his class. Their heights, in cm , are:

166	168	168	169	172	173	177

Work out the mean of the data. Give your answer in cm, correct to one decimal place.

166	168	168	169	172	173	177

$$
\text { Mean }=\frac{\text { sum of all the values }}{\text { number of values }}
$$

Mean $=\frac{\text { Sum of Heights }}{\text { Number of Students }}$
$=\frac{166+168+168+169+172+173+177}{7}$
$=\frac{1193}{7}$
$=170.43$
$\approx 170.4 \mathrm{~cm}$

$a(-4,3), b(6,-1)$ and $c(2,7)$ are three points.
Find the area of the triangle $a b c$.

Area of a Triangle	
$A=\frac{1}{2}\left\|x_{1} y_{2}-x_{2} y_{1}\right\|$	$a(-4,3)$ $b(6,-1)$ $c(2,7)$

Before we can use this formula, we need to move one of the points to $(0,0)$ and find the image of the other 2 points under the same translation.

$$
\begin{aligned}
& A=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \\
& A=\frac{1}{2}|(10)(4)-(-4)(6)| \\
& A=\frac{1}{2}|40+24| \\
& A=\frac{1}{2}|64| \\
& A=32 \text { units }^{2}
\end{aligned}
$$

Translate

 x value $\uparrow 4$ y value $\downarrow 3$A circle has centre o and radius 4 cm .
a and b are two points on the circle and $|\angle a o b|=150^{\circ}$.
(i) Find the area of the circle, correct to the nearest cm^{2}.
(ii) Find the area of the sector $a o b$, correct to the nearest cm^{2}.
(iii) Find the length of the shorter arc $a b$, correct to the nearest cm .

$$
\begin{aligned}
& \text { Area of a Circle } \\
& A=\pi r^{2} \\
& A=\pi r^{2} \\
& A=\pi(4)^{2} \\
& A=16 \pi \\
& A=50.265 \\
& A \approx 50 \mathrm{~cm}^{2}
\end{aligned}
$$

> The formulae for the Area of a Circle, Area of a Sector and
> Length of an Arc are on pages 8/9 of the Maths Formulae Book.

$$
\begin{aligned}
\text { Area of a Sector } \\
A=\pi r^{2} \times\left(\frac{\theta}{360}\right)
\end{aligned} \quad \begin{aligned}
A & =\pi r^{2} \times\left(\frac{\theta}{360}\right) \\
A & =\pi(4)^{2} \times\left(\frac{150}{360}\right) \\
A & =20.94 \\
A & \approx 21 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { Length of Arc } \\
& l=2 \pi r \times\left(\frac{\theta}{360}\right) \\
& l=2 \pi r \times\left(\frac{\theta}{360}\right) \\
& l=2 \pi(4) \times\left(\frac{150}{360}\right) \\
& l=10.47 \mathrm{~cm} \\
& l \approx 10 \mathrm{~cm}
\end{aligned}
$$

The columns in the table below represent the following sets of numbers:
Natural numbers (\mathbb{N}), Integers (\mathbb{Z}), Rational numbers (\mathbb{Q}), Irrational numbers $(\mathbb{R} \backslash \mathbb{Q})$ and Real numbers (\mathbb{R}).
Complete the table by writing either 'Yes' or ' $N o$ ' into each box indicating whether each of the numbers $\sqrt{5}, 8,-4,3 \frac{1}{2}, \frac{3 \pi}{4}$ is or is not an element of each.
(One box has already been filled in. The 'Yes' indicates that the number 8 is an element of the set of Real numbers, \mathbb{R}).

Number/Set	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	$\mathbb{R} \backslash \mathbb{Q}$	\mathbb{R}
$\sqrt{5}$	No	No	No	Yes	Yes
8	Yes	Yes	Yes	No	Yes
-4	No	Yes	Yes	No	Yes
$3 \frac{1}{2}$	No	No	Yes	No	Yes
$\frac{3 \pi}{4}$	No	No	No	Yes	Yes

Natural numbers are the ordinary counting numbers
$\mathbb{N}=\{1,2,3,4 \ldots\}$
Integers are all positive and negative whole numbers.
$\mathbb{Z}=\{\ldots-4,-3,-2,-1,0,1,2,3,4 \ldots\}$

Rational numbers are also called fractions
$\mathbb{Q}=\left\{\right.$ any number that can be written $\frac{a}{b}$, where a, b are integers and $\left.b \neq 0.\right\}$
Irrational numbers \mathbb{R} / \mathbb{Q} cannot be written as fractions $\frac{a}{b}$ where a, b are integers and $b \neq 0$.
Examples - $\sqrt{2}, \pi, e$

In the case of $\sqrt{5}$ explain your choice in relation to the set of Irrational numbers $(\mathbb{R} \backslash \mathbb{Q})$ (i.e. give a reason for writing either 'Yes' or 'No').

Number/Set	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	$\mathbb{R} \backslash \mathbb{Q}$	\mathbb{R}
$\sqrt{5}$	No	No	No	Yes	Yes
8	Yes	Yes	Yes	No	Yes
-4	No	Yes	Yes	No	Yes
$3 \frac{1}{2}$	No	No	Yes	No	Yes
$\frac{3 \pi}{4}$	No	No	No	Yes	Yes

Yes $\sqrt{5}$ is an irrational number, $\mathbb{R} \backslash \mathbb{Q}$.
$\sqrt{5}$ cannot be written as a fraction $\frac{a}{b}$, where $a, b \in \mathbb{Z}$.

Famous irrational numbers include π and \boldsymbol{e}.
\boldsymbol{e} is approximately equal to 2.71828

