

LCOL BASIC SKILLS PACK 7

LEAVING CERT ORDINARY LEVEL

LCOL Basic Skills: Pack 7 - Table of Contents

Topic, Year and Level

1 Algebra: 2012 Paper 1-Q3 (b)
2 Complex Numbers: 2009 Paper 1-Q4 (a)
3 Area, Perimeter and Volume : 2006 Paper 2 - Q1 (c)
4 Differentiation: 2011 Paper 1-Q7 (c)
5 - Patterns: 2011 Paper 1-Q3

Maths Points
Junior and Leaving Cert

Solve for x and y
$x-y+5=0$
$x^{2}+y^{2}=17$

Take the linear expression and express x in terms of y.

$$
\begin{aligned}
& x-y+5=0 \\
& x=y-5
\end{aligned}
$$

Substitute this value of x into the non-linear equation.
$x^{2}+y^{2}=17$
$(y-5)^{2}+y^{2}=17$
$(y-5)(y-5)+y^{2}=17$
$y(y-5)-5(y-5)+y^{2}=17$
$y^{2}-5 y-5 y+25+y^{2}=17$
$2 y^{2}-10 y+8=0$
$y^{2}-5 y+4=0$
$(y-1)(y-4)=0$
$y-1=0$
$y-4=0$
$y=1$
$y=4$

We can now use our y values to solve for x by subbing them back into the rearranged linear equation.
$x=y-5$
$x=1-5$
$y=1$
$x=-4$
$x=y-5$
$x=4-5$
$x=-1$

Given that $i^{2}=-1$, simplify

$$
2(3-5 i)+7 i(2+3 i)
$$

and write your answer in the form $x+y i$, where $x, y \in \mathbf{R}$.

Expand brackets by multiplying

$$
\begin{aligned}
& 2(3-5 i)+7 i(2+3 i) \\
& =6-10 i+14 i+21 i^{2} \\
& =6-10 i+14 i+21(-1) \\
& =6+4 i-21 \\
& =-15+4 i
\end{aligned}
$$

The volume of a hemisphere is $486 \pi \mathrm{~cm}^{3}$. Find the radius of the hemisphere.

The formulae for the Volume of a Sphere is on page 10 of the Maths Formulae Book.

(ii)

Volume of a Sphere
 $V=\frac{4}{3} \pi r^{3}$
 Volume of a Hemisphere
 $V=\frac{2}{3} \pi r^{3}$

We are given the volume of the hemisphere so let this equal to the formula and solve for r.

$$
\begin{aligned}
& \frac{2}{3} \pi r^{3}=486 \pi \\
& \frac{2}{3} r^{3}=486 \\
& r^{3}=\frac{486}{\frac{2}{3}} \\
& r^{3}=729 \\
& r=9 \mathrm{~cm}
\end{aligned}
$$

Find the volume of the smallest rectangular box that the hemisphere will fit into.

18

$$
\begin{aligned}
& \text { Radius } \\
& =9 \\
& \text { Diameter } \\
& =18
\end{aligned}
$$

$$
\begin{aligned}
& V=l \times b \times h \\
& V=18 \times 18 \times 9 \\
& V=2916 \mathrm{~cm}^{3}
\end{aligned}
$$

A ball is rolled in a straight line along a surface. The distance, s metres, the ball travels is given by

$$
s=18 t-2 t^{2}
$$

where t is the time in seconds from the instant the ball begins to move. Find the speed of the ball after 3 seconds.

Differentiate a distance formula to get a formula for speed.

$$
\begin{aligned}
& s=18 t-2 t^{2} \\
& \frac{d s}{d t}=18-4 t
\end{aligned}
$$

Calculate the speed when the time is 3 seconds, $t=3$.

When you differentiate a function, you get the rate of change of that function.

Speed is the change in distance with respect to time!

To get a numerical value for the speed we must specify a value for t, in this case $t=3$.

How far is the ball from the starting point when it stops moving?

The ball will stop when its speed is 0 . Calculate the time taken for this to happen and then sub this time into the distance formula.

$$
\begin{aligned}
& s=18 t-2 t^{2} \\
& \frac{d s}{d t}=18-4 t
\end{aligned}
$$

$$
18-4 t=0
$$

$$
-4 t=-18
$$

$$
t=\frac{-18}{-4}
$$

$$
t=4.5 \text { seconds }
$$

$$
s=18 t-2 t^{2}
$$

$$
s=18(4.5)-2(4.5)^{2} \quad \leftrightarrow t=4.5
$$

$$
s=81-40.5
$$

$$
s=40.5 \mathrm{~m}
$$

The ball will have stopped after 4.5 seconds and will have travelled 40.5 m in that time.

Show that the speed of the ball decreases at a constant rate while it is moving.

Acceleration is the change in speed over time.

If we are given a distance formula, represented by s, we can find formula for speed and acceleration by differentiating.

$$
\begin{aligned}
& s=18 t-2 t^{2} \\
& \frac{d s}{d t}=18-4 t
\end{aligned} \quad \begin{aligned}
& s=18 t-2 t^{2} \\
& \frac{d s}{d t}=18-4 t \\
& \frac{d^{2} s}{d t^{2}}=-4
\end{aligned}
$$

Distance
Acceleration

The acceleration is a constant $-4 \mathrm{~m} / \mathrm{s}^{2}$ therefore the speed of the ball decreases at a constant rate while it is moving.

The terms in an arithmetic sequence are given by the formula

$$
T_{n}=38-4 n, \quad \text { for } n=1,2,3,4, \ldots
$$

$$
T_{n}=38-4 n
$$

Write out the first three terms in the sequence.

$$
\begin{aligned}
& T_{n}=38-4 n \\
& T_{1}=38-4(1)=34 \\
& T_{2}=38-4(2)=30 \\
& T_{3}=38-4(3)=26
\end{aligned}
$$

(b)

What is the first negative term of the sequence.

Looking for the value of n that makes the term negative (<0).

$$
\begin{aligned}
& 38-4 n<0 \\
& 38<4 n \\
& 9.5<n
\end{aligned}
$$

10th term is the first negative term.

Sub $n=10$ into the formula to find the $10^{\text {th }}$ term (the first negative term).
$T_{n}=38-4 n$
$T_{10}=38-4(10)$
$T_{10}=38-40$
$T_{10}=-2$
$34,30,26,22,18,14,10,6,2,-2 \ldots$

