

Maths Points

Junior and Leaving Cert

LCOL BASIC SKILLS PACK 9

LEAVING CERT ORDINARY LEVEL

Topic, Year and Level

- 1 > Algebra : 2012 Paper 1 Q4 (a)
- 2 > Applied Arithmetic (Financial) : 2010 Paper 1 Q1 (b)
- 3 Area, Perimeter and Volume : 2014 Paper 2 Q1 (c)
- 4 Trigonometry: 2011 Paper 2 Q5 (b)
- 5 > Probability : 2010 LCOL Paper 2 Q6 (c)

Maths Points

Junior and Leaving Cert

1 ≥ 2012 LCOL Paper 1 – Question 4 (a)

Solve the equation

$$\frac{1}{2}(7x-2) + 5 = 2x + 7.$$

Method 1

Multiplying Signs (+)(+) = + (-)(-) = + (+)(-) = -(-)(+) = -

- $\frac{1}{2}(7x-2) + 5 = 2x + 7$
- 7x 2 + 10 = 4x + 14
- 7x 4x = 14 10 + 2
- 3x = 6
- $x = \frac{6}{3}$ x = 2

- Multiply both sides of the equation by 2 to remove the fraction.
- Collect the *x* terms on one side of the equals and the numbers (constants) on the other.

Divide by the coefficient of *x* (the number beside it!)

1 ≥ 2014 LCOL Paper 1 – Question 4 (a)

Solve the equation

$$\frac{1}{2}(7x-2) + 5 = 2x + 7.$$

Method 2

Multiplying Signs
(+)(+) = +
(-)(-) = +
(+)(-) = -
(-)(+) = -

$$\frac{1}{2}(7x-2) + 5 = 2x + 7$$

3.5x - 1 + 5 = 2x + 7

3.5x - 2x = 7 + 1 - 5

1.5x = 3

x = 2

Remove brackets first by multiplying theterm outside the bracket by the terms inside.

Collect the *x* terms on one side of the equals and the numbers (constants) on the other.

Divide by the coefficient of *x* (the number beside it!)

2 ≥ 2010 LCOL Paper 1 – Question 1 (b) (ii)

An importer buys an item for £221 sterling when the rate of exchange is $\pounds 1 = \pounds 0.85$ sterling.

He sells it at a profit of 14% of the cost price.

Calculate, in euro, the price for which he sells the item.

For **currency** questions we either multiply or divide by the exchange rate. **Cross multiplying** is a good way to figure out which one if you are not sure!

€1 = £0.85€x = £221

0.85x = 1(221)221

$$x = \frac{1}{0.85}$$

x = 260

The cost price in euro is €260.

The selling price is equal to the cost price + 14%, or 114% of the cost price.

260 × 1.14 = €296.40

He sells the item for €296.40.

Divide the amount of sterling you get for each euro (0.85) by the number of sterling (221).

3 ► 2007 JCHL Paper 2 – Question 1 (c)

MÅTHSPOINTS.IE

A team trophy for the winners of a football match is in the shape of a sphere supported on a cylindrical base, as shown. The diameter of the sphere and of the cylinder is 21 cm.

Find the volume of the sphere, in terms of π .

(ii)

The volume of the trophy is 6174π cm³.

Find the height of the cylinder.

We know that the volume of the sphere is 1543.5π so subtract this from the total volume, 6174π to get the volume of the cylindrical section. 6174π — <u>1543.5π</u> 4630.5π

Let the volume of the cylinder (4630.5π) equal the formula and solve for the height, *h*.

Volume of a Cylinder $V = \pi r^2 h$ r^2 r = 10.5 (2) h h

 $\pi r^{2}h = 4630.5\pi$ $r^{2}h = 4630.5$ $(10.5)^{2}h = 4630.5$ 110.25h = 4630.5 $h = \frac{4630.5}{110.25}$ h = 42 cm

4 ≥ 2011 LCOL Paper 2 – Question 5 (b) (i)

Trigonometry Ratio

 $\tan = -$

opposite

adjacent

In the triangle *ABC*,
$$|BC| = 6$$
 cm, $|\angle ABC| = 90^\circ$, $|\angle CAB| = \theta$ and $\sin \theta = \frac{3}{5}$.
Find $|AC|$.

Pythagoras Theorem and the **Trigonometric Ratios** can be found on **page 9** of the Maths Formulae Book.

 $c^{2} = a^{2} + b^{2}$ $|10|^{2} = |AB|^{2} + 6^{2}$ $100 = |AB|^{2} + 36$ $100 - 36 = |AB|^{2}$ $64 = |AB|^{2}$ |AB| = 8 cm

 $sin = \frac{opposite}{hypotenuse}$ $cos = \frac{adjacent}{hypotenuse}$ $sin \theta = \frac{3}{5}$ Steps:1. Label the sides.
2. Pick a ratio.

 $\begin{array}{c} \hline hypotenuse \\ |AC| \\ \theta \\ A \\ B \end{array}$

5 ► 2010 LCOL Paper 2 – Question 6 (c)

A code consists of a four-digit number which is formed from the digits 3 to 9 inclusive. No digit can occur more than once in the code.

- (i) Write down the smallest possible four-digit code.
- (ii) How many different codes are possible?
- (iii) How many of the four-digit codes are greater than 6000?
- (iv) How many of the four-digit codes are divisible by 2?

Digits 3 to 9 inclusive: 3, 4, 5, 6, 7, 8, 9

3456

(i)

(ii)

$[7] \times [6] \times [5] \times [4]$
= 840

There are 7 possibilities for the first digit then 6 for the second digit, then 6 for the third etc.

```
(iii) [4] \times [6] \times [5] \times [4]
= 480
```

(iv) $[6] \times [5] \times [4] \times [3]$ = 360 Greater than 6000, so there are only 4 options for the first digit., then 6, then 5 etc

Divisible by 2 means it must end in an even
 number so there are 3 options for the final digit,
 then 6 options for the first, 5 for the second etc

