

LCOL BASIC SKILLS PACK 9

LEAVING CERT ORDINARY LEVEL

LCOL Basic Skills: Pack 3 - Table of Contents

1 Algebra: 2012 Paper 1-Q4 (a)
2 Applied Arithmetic (Financial): 2010 Paper 1 - Q1 (b)
$3>$ Area, Perimeter and Volume: 2014 Paper 2 - Q1 (c)
Trigonometry : 2011 Paper 2 - Q5 (b)
Probability : 2010 LCOL Paper 2 - Q6 (c)

Maths Points
Junior and Leaving Cert

Solve the equation

$$
\frac{1}{2}(7 x-2)+5=2 x+7
$$

$$
\begin{aligned}
& \frac{1}{2}(7 x-2)+5=2 x+7 \\
& 7 x-2+10=4 x+14 \\
& 7 x-4 x=14-10+2 \\
& 3 x=6 \\
& x=\frac{6}{3} \\
& x=2
\end{aligned}
$$

Multiply both sides of the equation by 2 to remove the fraction.

Collect the x terms on one side of the equals and the numbers (constants) on the other.

Divide by the coefficient of x (the number beside it!)

$$
\frac{1}{2}(7 x-2)+5=2 x+7
$$

$\frac{1}{2}(7 x-2)+5=2 x+7$
$3.5 x-1+5=2 x+7$
$3.5 x-2 x=7+1-5$
$1.5 x=3$
$x=\frac{3}{1.5}$
$x=2$

Divide by the coefficient of x (the number beside it!)
Remove brackets first by multiplying the term outside the bracket by the terms inside.

Collect the x terms on one side of the equals and the numbers (constants) on the other.

An importer buys an item for $£ 221$ sterling when the rate of exchange is $€ 1=£ 0 \cdot 85$ sterling.
He sells it at a profit of 14% of the cost price.
Calculate, in euro, the price for which he sells the item.

For currency questions we either multiply or divide by the exchange rate. Cross multiplying is a good way to figure out which one if you are not sure!

$$
\begin{aligned}
& € 1=£ 0.85 \\
& € x^{2}=£ 221
\end{aligned}
$$

$0.85 x=1(221)$
$x=\frac{221}{0.85}$
$x=260$
The cost price in euro is $€ 260$.

The selling price is equal to the cost price $+14 \%$, or 114% of the cost price.
The selling price is equal to the cost price $+14 \%$,
or 114% of the cost price.

Divide the amount of sterling you get for each euro (0.85) by the number of sterling (221).
$260 \times 1.14=€ 296.40$

He sells the item for €296.40.

A team trophy for the winners of a football match is in the shape of a sphere supported on a cylindrical base, as shown. The diameter of the sphere and of the cylinder is 21 cm .

Find the volume of the sphere, in terms of π.

Volume of a Sphere
 $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
V & =\frac{4}{3} \pi(10.5)^{3} \\
V & =1543.5 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

The formulae for the Volumes of Spheres and Cylinders can be found on page 10 of the Maths Formulae Book.

21 cm

The volume of the trophy is $6174 \pi \mathrm{~cm}^{3}$.
Find the height of the cylinder.

We know that the volume of the sphere is 1543.5π so subtract this from the total volume, 6174π to get the volume of the cylindrical section.

Let the volume of the cylinder (4630.5π) equal the formula and solve for the height, h.

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Volume of a Cylinder } \\
V=\pi r^{2} h
\end{array} & \begin{array}{l}
\pi r^{2} h=4630.5 \pi t \\
r^{2} h=4630.5
\end{array} \\
\cline { 1 - 2 } & (10.5)^{2} h=4630.5 \\
110.25 h=4630.5 \\
& h=\frac{4630.5}{110.25} \\
& h=42 \mathrm{~cm}
\end{array}
$$

$6174 \pi-$ 1543.5π 4630.5π

In the triangle $A B C,|B C|=6 \mathrm{~cm},|\angle A B C|=90^{\circ},|\angle C A B|=\theta$ and $\sin \theta=\frac{3}{5}$. Find $|A C|$.

Pythagoras Theorem and the Trigonometric Ratios can be found on page 9 of the Maths Formulae Book.

Verify that $\cos ^{2} \theta+\sin ^{2} \theta=1$.
Write expressions for $\cos \theta$ and $\sin \theta$.

$\cos =\frac{\text { adjacent }}{\text { hypotenuse }}$
$\cos \theta=\frac{8}{10}$
$\cos \theta=\frac{4}{5}$
$\sin =\frac{\text { opposite }}{\text { hypotenuse }}$
$\sin \theta=\frac{6}{10}$
$\sin \theta=\frac{3}{5}$

$$
\begin{aligned}
& \cos ^{2} \theta+\sin ^{2} \theta=\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2} \\
& \cos ^{2} \theta+\sin ^{2} \theta=\frac{16}{25}+\frac{9}{25} \\
& \cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

As required.

A code consists of a four-digit number which is formed from the digits 3 to 9 inclusive. No digit can occur more than once in the code.
(i) Write down the smallest possible four-digit code.
(ii) How many different codes are possible?
(iii) How many of the four-digit codes are greater than 6000 ?
(iv) How many of the four-digit codes are divisible by 2?

Digits 3 to 9 inclusive:
$3,4,5,6,7,8,9$

(i) 3456
(ii) $[7] \times[6] \times[5] \times[4]$
$=840$
(iii)
$[4] \times[6] \times[5] \times[4]$
$=480$
(iv)
$[6] \times[5] \times[4] \times[3]$
$=360$

There are 7 possibilities for the first digit then 6 for the second digit, then 6 for the third etc.

Greater than 6000, so there are only 4 options for the first digit., then 6 , then 5 etc

Divisible by 2 means it must end in an even number so there are 3 options for the final digit, then 6 options for the first, 5 for the second etc

